Journal of Thermal Analysis and Calorimetry, Vol. 61 (2000) 119–125

## THERMAL DECOMPOSITION OF TRIALKYL/ ARYLPHOSPHINE GOLD(I) CYANIDE COMPLEXES

# M. N. Akhtar<sup>1\*</sup>, A. A. Isab<sup>2</sup> and A. Hassan<sup>1</sup>

<sup>1</sup>Center for Refining and Petrochemicals, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261
<sup>2</sup>Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261 Saudi Arabia

(Received April 15, 1999; in revised form September 7, 1999)

## Abstract

Combined TG/DTA techniques have been used to study the thermal decomposition of  $R_3PAuCN$  (where *R* is ethyl, cyclohexyl, *o*-tolyl, *m*-tolyl, *p*-tolyl, allyl, cyanoethyl, 1-naphthyl and phenyl) complexes. It was observed that all of these complexes underwant decomposition cum redox reactions in the range of 200–600°C with evolution of both trans ligands, which are phosphine and cyanide, leaving metallic gold as a residue. The thermal decomposition of *o*-Tol<sub>3</sub>PAuCN has revealed that this is a stepwise process. In the first step decomposition takes place with evolution of phosphine and generation of AuCN, which in second step undergoes a redox reaction to produce metallic gold. The DTA curves have also confirmed these results.

Keywords: alkyl/arylphosphine gold(I) cyanide, redox reaction, thermal decomposition

## Introduction

Gold(I) drugs have been used in the treatment of rheumatoid arthritis (RA) for over 60 years [1–4]. Solganal (gold(I) thioglucose) and myochrysine (gold(I) thiomalate) are highly water soluble gold drugs and are only active by injection [1–3], whereas, Auranofin (1-thio- $\beta$ -D-glucopyranose-2,3,4,6-tetracetato-S), (triethylphosphine) gold(I) is lipophilic and is an orally active drug [4].

Smokers who are treated with various anti arthritic gold(I) drugs have been reported to contain higher concentration of gold in their red blood cells as compared to non-smokers [5–7]. Tobacco smoke contains approximately 0.5  $\mu$ g l<sup>-1</sup> of HCN [8] which, interacts with these gold drugs to form L–Au–CN as an asymmetric complex (where *L* is a thiolate or phosphine group). The L–Au–CN complexes readily undergo disproportionation reactions in solution as shown in Eq. (1) to form [Au(CN)<sub>2</sub>]<sup>-</sup> species, which can enter red blood cells.

$$2L-Au-CN \leftrightarrow [AuL_2]^+ + [Au(CN)_2]^-$$
(1)

1418-2874/2000/\$ 5.00

© 2000 Akadémiai Kiadó, Budapest

<sup>\*</sup> Author for correspondence: e-mail: mnakhtar@kfupm.edu.sa

Similar disproportionation reactions have been observed in R<sub>3</sub>PAuCN complexes in solution form, however in solid state these complexes have been identified as linear asymmetric [9–12] but we have isolated [CEP–Au–CN] complex as an ionic compound {[(CEP<sub>2</sub>Au]<sup>+</sup>[Au(CN)<sub>2</sub>]<sup>-</sup>} [13]. Recently, we have prepared a series of R<sub>3</sub>PAuCN complexes [14], and have studied their disproportionation reactions in solution using <sup>13</sup>C, <sup>31</sup>P and <sup>15</sup>N NMR spectroscopy. Since these gold complexes are very important from medicinal point of view therefore we decided to study their thermal stability in the present work, where no one else, to the best of our knowledge has reported these studies on R<sub>3</sub>PAuCN complexes in the literature.

### Experimental

#### Reagents

Ethanol, potassium cyanide, thiodiglycol, dimethylsulfide, HAuCl<sub>4</sub>4H<sub>2</sub>O and alumina were purchased from Aldrich, whereas, phosphine ligands (ethyl, cyclohexyl, *o*-tolyl, *m*-tolyl, *p*-tolyl, allyl, cyanoethyl, 1-naphthyl and phenyl) were obtained from Stream Chemical Company.

#### Synthesis of R<sub>3</sub>PAuCN complexes

Two methods were used to synthesize  $R_3PAuCN$  complexes [10, 14–17], which are given below. Complex 1 was prepared from method-1, whereas complexes 2–10

| Complex | R <sub>3</sub> P             | Analysis     | Melting    | Yield/       |          |    |
|---------|------------------------------|--------------|------------|--------------|----------|----|
|         |                              | С            | Н          | Ν            | point/°C | %  |
| 1       | Cycl <sub>3</sub> P          | 44.80(45.32) | 6.72(6.56) | 2.63(2.85)   | 143      | 78 |
| 2       | CyclPh <sub>2</sub> P        | 46.45(46.44) | 4.24(4.28) | 3.01(2.89)   | 170      | 82 |
| 3       | Et <sub>3</sub> P            | 25.08(24.63) | 4.54(4.40) | 4.09(4.11)   | 108      | 73 |
| 4       | Ph <sub>3</sub> P            | 46.23(47.01) | 3.29(3.09) | 2.81(2.89)   | 202      | 90 |
| 5       | AllPh <sub>2</sub> P         | 43.12(42.76) | 3.43(3.34) | 3.03(3.12)   | 139      | 60 |
| 6       | CEP                          | 29.72(31.17) | 2.95(2.34) | 14.14(14.55) | 121      | 71 |
| 7       | Np <sub>3</sub> P            | 58.56(58.58) | 3.30(3.31) | 2.35(2.20)   | 263      | 75 |
| 8       | <i>p</i> -Tol <sub>3</sub> P | 50.08(50.09) | 3.94(3.98) | 2.81(2.66)   | 185      | 85 |
| 9       | <i>m</i> -Tol <sub>3</sub> P | 50.05(50.09) | 3.90(3.98) | 2.75(2.66)   | 154      | 86 |
| 10      | o-Tol <sub>3</sub> P         | 51.06(50.09) | 4.12(3.98) | 2.93(2.66)   | 240      | 81 |
| 11      | AuCN                         | 5.41(5.38)   | _          | 6.42(6.28)   | _        | 70 |

Table 1 Elemental analysis, melting points and yields of R<sub>3</sub>PAuCN and AuCN complexes

Note: Full names of all phosphine ligands are given below: Cycl<sub>3</sub>P (tricyclohexylphosphine); CyclPh<sub>2</sub>P (cyclohexyldiphenylphosphine); Et<sub>3</sub>P (triethylphosphine); Ph<sub>3</sub>P (triphenylphosphine); AllPh<sub>2</sub>P (allyldiphenylphosphine); CEP (triscyanoethylphosphine); Np<sub>3</sub>P (1-naphthylphosphine); *p*-Tol<sub>3</sub>P (triparatolylphosphine); *m*-Tol<sub>3</sub>P (trimetatolylphosphine);

*o*-Tol<sub>3</sub>P (triorthotolylphosphine)

J. Therm. Anal. Cal., 61, 2000

were prepared from method-2. Elemental analysis, melting points and percentage yields of  $R_3PAuCN$  complexes are given in Table 1.

#### Method 1

The synthesis of  $R_3PAuCN$  complexes was a two-step reaction. In the first step Me<sub>2</sub>SAuCl was prepared as a precursor complex by the reduction of HAuCl<sub>4</sub> with an excess of Me<sub>2</sub>S [15] (Eq. (2)). While in the second step double displacement of Me<sub>2</sub>S and Cl<sup>-</sup> from Me<sub>2</sub>SAuCl with phosphine and cyanide ligands was used to prepare R<sub>3</sub>PAuCN complexes [14] (Eq. (3))

$$HAuCl_4 + 2Me_2 S + H_2O \rightarrow Me_2SAuCl + Me_2SO + 3HCl$$
(2)

$$Me_2SAuCl+R_3P+KCN \rightarrow R_3PAuCN+Me_2S+KCl$$
(3)

The reactions were carried out in darkness due to photodecomposition of Me<sub>2</sub>SAuCl.

#### Method 2

The R<sub>3</sub>PAuCN complexes were synthesized in two steps. In the first step R<sub>3</sub>PAuCl was prepared by the reduction of HAuCl<sub>4</sub> with thiodiglycol at 0°C, followed by the addition of R<sub>3</sub>P ligand [17] (Eq. (4)). The R<sub>3</sub>PAuCl prepared in this way was washed several times with ethanol to remove excess thiodiglycol to prevent further reduction of R<sub>3</sub>PAuCl to metallic gold. In the second step Cl<sup>-</sup> was replaced with CN<sup>-</sup> from R<sub>3</sub>PAuCl to synthesize R<sub>3</sub>PAuCN [10, 16] (Eq. (5)).

 $R_{3}P+HAuCl_{4}+H_{2}O+S(CH_{2}CH_{2}OH)_{2} \rightarrow R_{3}PAuCl+3HCl+OS(CH_{2}CH_{2}OH)_{2} \quad (4)$ 

$$R_{3}PAuCl+KCN \rightarrow R_{3}PAuCN+KCl$$
(5)

#### Synthesis of AuCN

The AuCN complex was synthesized in two steps. In the first step the  $K[Au(CN)_2]$  complex was prepared by the double displacement of Me<sub>2</sub>S and Cl<sup>-</sup> from Me<sub>2</sub>SAuCl with two equivalents of KCN [18] (Eq. (6)). Then, in the second step conc. H<sub>2</sub>SO<sub>4</sub> was added in excess to  $K[Au(CN)_2]$  complex, which resulted in the generation of AuCN complex [18] (Eq. (7)).

$$Me_2SAuCl+2KCN \rightarrow K[Au(CN)_2]+Me_2S+KCl$$
(6)

$$2K[Au(CN_2)] + H_2SO_4 \rightarrow 2AuCN + 2HCN + K_2SO_4$$
(7)

#### Thermal analysis

Thermal analysis in air atmosphere was carried out using a Netzsch simultaneous thermal analyzer STA 429, which measures TG and DTA simultaneously on the same sample.

J. Therm. Anal. Cal., 61, 2000

In all runs, the sample (~20–30 mg) was placed in small platinum crucible. The crucibles were then mounted on a palladium–ruthenium platform on twin ceramic stems in such a way that the beads of two Pt/Pt–13%Rh thermocouples came within the base recess of each crucible. The platform was also connected to the microbalance such that slight change in the mass of the sample was indicated. Alumina was used as a reference material. The furnace was controlled at a heating rate of  $10^{\circ}$ C min<sup>-1</sup>.

## **Results and discussion**

The thermogravimetric (TG) curves of  $R_3PAuCN$  complexes are shown in Fig. 1 and the results are listed in Table 2.

| Complement | Mass loss/% |            | Temperature | Volatile                               | D:      |
|------------|-------------|------------|-------------|----------------------------------------|---------|
| Complexes  | found       | calculated | range/°C    | matter                                 | Kesidue |
| 1          | 60.30       | 60.99      | 290-430     | $Cycl_3P, CN^-$                        | Au      |
| 2          | 59.85       | 60.00      | 210-415     | CyclPh <sub>2</sub> P, CN <sup>-</sup> | Au      |
| 3          | 42.00       | 42.56      | 255-405     | $Et_3P, CN^-$                          | Au      |
| 4          | 58.64       | 59.54      | 280-490     | $Ph_3P, CN^-$                          | Au      |
| 5          | 48.21       | 48.0       | 200-440     | AllPh <sub>2</sub> P, CN <sup>-</sup>  | Au      |
| 6          | 38.25       | 36.65      | 220-500     | CEP, CN <sup>-</sup>                   | Au      |
| 7          | 69.18       | 69.07      | 270-544     | $Np_3P, CN^-$                          | Au      |
| 8          | 61.98       | 62.76      | 260-520     | p-Tol <sub>3</sub> P, CN <sup>-</sup>  | Au      |
| 9          | 61.87       | 62.76      | 220-500     | m-Tol <sub>3</sub> P, CN <sup>-</sup>  | Au      |
| 10         | 57.50       | 57.47      | 250-385     | o-Tol <sub>3</sub> P                   | AuCN    |
| 10         | 5.51        | 5.29       | 385–480     | $CN^{-}$                               | Au      |
| 11         | 11.5        | 11.65      | 350-700     | CN <sup>-</sup>                        | Au      |
|            |             |            |             |                                        |         |

Table 2 Thermogravimetric results of R<sub>3</sub>PAuCN and AuCN complexes

All R<sub>3</sub>PAuCN complexes except 10 showed a mass loss in the temperature range of 200 to 600°C corresponding to the loss of alkyl/aryl phosphine and cyanide ligands in one step. The 10 complex showed two separate mass losses corresponding to the loss of tri-*o*-tolylphosphine ligand in first step and CN ligand in second step. Metallic gold was observed as a residue in the crucible in all the cases.

We also carried out thermal analysis of AuCN complex. It showed a gradual loss of CN ligand in the temperature range of 350 to 700°C while metallic gold was observed as a residue in the crucible.

The DTA curves of  $R_3PAuCN$  complexes are also presented in Fig. 1. The 1–5, 7, 8, complexes showed two endothermic transitions, the first corresponding to their melting points and the second corresponding to the decompositions of these complexes with evolution of phosphine and cyanide ligands.

J. Therm. Anal. Cal., 61, 2000

122



Fig. 1 TG/DTA curves of some R<sub>3</sub>PAuCN complexes

The 9 complex, showed first endothermic transition corresponding to its melting point and second exothermic transition corresponding to the decomposition of the complex.

The 6 complex showed three endothermic transitions. The first endothermic transition at  $121^{\circ}$ C was observed due to melting of the complex, while the second endothermic transition at 286°C was observed due to decomposition of the complex and the third endothermic transition at 360°C was observed due to redox reaction of complex.

The 10 complex showed first endothermic transitions at  $240^{\circ}$ C corresponding to melting of the complex. While two more exothermic transitions were observed at 300 and 440°C corresponding to the decomposition and redox reaction respectively of the complex.

The AuCN complex showed only one exothermic transition at 531°C corresponding to its redox reaction. Combined TG/DTA results have given very useful information. These complexes undergo decomposition cum redox reactions with evolution of phosphine and formation of metallic gold as a residue. The decomposition of 10 complex has revealed that this process is actually stepwise. In the first step decomposition of complex results in the evolution of phosphine ligand and formation of

J. Therm. Anal. Cal., 61, 2000

AuCN complex, which in the second step undergoes a redox reaction to form metallic gold. In case of 6 complex although TG showed complete loss of both triscyanoethyl phosphine and cyanide ligands in one step but DTA is able to identify these two different processes and give rise to two different endothermic transitions.

This thermal decomposition, coupled with redox reaction, can be shown through following Eqs (8) and (9). Since thermal analysis was performed in air atmosphere, therefore moisture present in air was responsible for redox reaction as shown in Eq. (9).

$$R_3 PAuCN \rightarrow R_3 P + AuCN \tag{8}$$

$$2AuCN+H_2O \rightarrow 2Au(O)+2HCN+1/2O_2 \tag{9}$$

Thermal degradation of AuCN has confirmed this finding because it also undergoes a loss of CN with a redox reaction to produce metallic gold as residue. However this loss of CN ligand has been observed over a broad range of temperature from 350 to 700°C, which can be explained on bases of polymeric nature of AuCN complex.

In our previous studies [14] it was observed that  $K_{eq}$  for disproportionation of R<sub>3</sub>PAuCN complexes (Eq. (1)) was highly dependent on electronic properties (basicity) and steric factor (cone angle) of phosphine ligands. The electronic covalent parameter v for various phosphines in [R<sub>3</sub>PNi(CO)<sub>3</sub>] complexes was used by Tolman [19] to compare relative basicity of the phosphines. A decrease in the value of  $v_{co}$  indicates a net increase in the basicity of phosphines. All phosphine ligands have different basicity therefore they contribute different thermal stability to R<sub>3</sub>PAuCN complexes, which results in decomposition of different R<sub>3</sub>PAuCN complexes at different temperatures. The steric factor (i.e. cone angle  $\theta$ ) of phosphine ligands also plays an important role. In complex 10, o-Tol<sub>3</sub>P has a once angle of 194°, which is highest of all phosphine ligands. This large value of cone angle makes complex 10 unstable therefore, it readily undergoes decomposition and redox reactions. The cone angle of p-Tol<sub>3</sub>P and of Ph<sub>3</sub>P is same i.e. 145°, therefore their thermal behaviour is comparable. Whereas cone angles of o-Tol<sub>3</sub>P and m-Tol<sub>3</sub>P are much higher than that of *p*-Tol<sub>3</sub>P, therefore they exhibited different thermal behaviour. The values of  $v_{co}$  and cone angle for all phosphine ligands are given elsewhere [14].

We are thankful to Center for Refining and Petrochemicals, Research Institute and Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia for providing all research facilities.

#### References

- 1 P. J. Sadler, Struct. Bonding (Berlin), 29 (1976) 171.
- 2 C. F. Shyaw III, Inorg. Perspect. Biol. Med., 2 (1979) 287.
- 3 D. H. Brown and W. E. Smith, Chem. Soc. Rev., 9 (1980) 217.
- 4 D. T. Hill and B. M. Sutton, Cryst. Struct. Commun., 9 (1980) 679.
- 5 G. G. Graham, T. M. Havisto, H. M. Jones and G. D. Champion, Biochem. Pharmacol., 33 (1984) 1257.

- 6 D. W. James, N. W. Ludvigsen, L. G. Cleland and S. C. Milazzo, J. Rheum., 9 (1982) 532.
- 7 G. G. Graham, T. M. Havisto, P. J. McNaught, C. D. Brown and G. D. Champion, J. Rheum., 4 (1982) 527.
- 8 P. W. Derby and J. Wilson, J. Ophthalmol., 51 (1967) 336.
- 9 S. Ahrland, B. Aurivillius, K. Dreisch, B. Noren and A. Oskarsson, Acta Chem. Scand., 46 (1992) 262.
- 10 A. L. Hormann, C. F. Shaw III, D. W. Bennett and W. M. Reiff, Inorg. Chem., 25 (1986) 3953.
- 11 P. Jones and J. Launter, Acta Cryst., C44 (1988) 2091.
- 12 A. R. Al-Arfaj, J. H. Reibenspies, M. S. Hussain, M. Y. Darensbourg, M. N. Akhtar and A. A. Isab, Acta Cryst., C53 (1997) 1553.
- 13 M. S. Hussain, A. R. Al-Arfaj, M. N. Akhtar and A. A. Isab, Polyhedron, 15 (1996) 2781.
- 14 A. A. Isab, M. S. Hussain, M. N. Akhtar, M. I. M. Wazeer and A. R. Al-Arfaj, Polyhedron, 18 (1999) 1401.
- 15 C. F. Shaw III, M. P. Cancro and I. S. Butler, J. Labelled Compd. Radiopharm., 16 (1979) 827.
- 16 M. N. Akhtar, I. H. Ghazi, A. A. Isab, A. R. Al-Arfaj, M. I. M. Wazeer and M. S. Hussain, J. Coord. Chem., 36 (1995) 149.
- 17 J. A. Muir, M. M. Mariel and L. B. Pulgar, Acta Cryst., C41 (1985) 1174.
- 18 A. L. Hermann-Arendt and C. F. Shaw III, Inorg. Chem., 29 (1990) 4683.
- 19 C. A. Tolman, Chem. Rev., 77 (1977) 313.